LEPU Test Kit Anticorpi Neutralizzanti COVID-19 Immunocromatografia a Fluorescenza

Metodo: Immunocromatografia a Fluorescenza

Principio: Il test contiene RBD e ACE2 etichettati fluorescenti, immobilizzati nell’area del test (T) e il corrispondente anticorpo nell’area del controllo qualità (C).

Il kit è così composto:

  • Kit anticorpi neutralizzanti
  • Diluzione dei campioni
  • Contagocce per campioni usa e getta.

 

Per informazioni scrivere a [email protected]

Fasi operative:

Interpretazione dei risultati:

Range di riferimento: tasso di inibizione ≥20%

 

Vantaggi del kit a fluorescenza:

  • L’interazione RBD-ACE2 del prodotto può essere neutralizzata (cioè bloccata) da anticorpi neutralizzanti specifici nel siero di pazienti o animali, allo stesso modo di cVNT o pVNT
  • La proteina ACE2 immobilizzata nell’area T del test può valutare accuratamente l’avvenuta neutralizzazione
  • Risultati in 15 minuti
  • Facile da utilizzare con POCT LEPU Fluo-800
  • Più accurato del metodo ad oro colloidale semi-quantitativo
  • SARS-CoV-2 (COVID-19) Nucleocapsid Antibody

    Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus. The disease is the cause of the 2019–20 coronavirus outbreak (1). SARS-CoV-2 is the seventh member of the enveloped, positive-stranded RNA viruses that are able to infect humans. The SARS-CoV-2 genome, like other coronaviruses, encodes for multiple structural and nonstructural proteins. The structural proteins include spike protein (S), envelope protein (E), membrane glycoprotein (M), nucleocapsid phosphoprotein (N), and the nonstructural proteins include open reading frame 1ab (ORF1ab), ORF3a, ORF6, ORF7a, ORF8, and ORF10 (2). Nucleocapsid (N) protein is the most abundant protein of coronavirus. It is also one of the major structural proteins and is involved in the transcription and replication of viral RNA, packaging of the encapsidated genome into virions (3), and interference with cell cycle processes of host cells (4). Moreover, in many coronaviruses, including SARS-CoV, the N protein has high immunogenic activity and is abundantly expressed during infection (5). It can be detected in various patient samples including nasopharyngeal aspirate, urine, and fecal. Both S and N proteins may be potential antigens for serodiagnosis of COVID-19, just as many diagnostic methods have been developed for diagnosing SARS based on S and/or N proteins (6).
    9099-01mg 582.37 EUR
  • SARS-CoV-2 (COVID-19) Nucleocapsid Antibody

    Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus. The disease is the cause of the 2019–20 coronavirus outbreak (1). SARS-CoV-2 is the seventh member of the enveloped, positive-stranded RNA viruses that are able to infect humans. The SARS-CoV-2 genome, like other coronaviruses, encodes for multiple structural and nonstructural proteins. The structural proteins include spike protein (S), envelope protein (E), membrane glycoprotein (M), nucleocapsid phosphoprotein (N), and the nonstructural proteins include open reading frame 1ab (ORF1ab), ORF3a, ORF6, ORF7a, ORF8, and ORF10 (2). Nucleocapsid (N) protein is the most abundant protein of coronavirus. It is also one of the major structural proteins and is involved in the transcription and replication of viral RNA, packaging of the encapsidated genome into virions (3), and interference with cell cycle processes of host cells (4). Moreover, in many coronaviruses, including SARS-CoV, the N protein has high immunogenic activity and is abundantly expressed during infection (5). It can be detected in various patient samples including nasopharyngeal aspirate, urine, and fecal. Both S and N proteins may be potential antigens for serodiagnosis of COVID-19, just as many diagnostic methods have been developed for diagnosing SARS based on S and/or N proteins (6).
    9103-002mg 225.11 EUR
  • SARS-CoV-2 (COVID-19) Nucleocapsid Antibody

    Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus. The disease is the cause of the 2019–20 coronavirus outbreak (1). SARS-CoV-2 is the seventh member of the enveloped, positive-stranded RNA viruses that are able to infect humans. The SARS-CoV-2 genome, like other coronaviruses, encodes for multiple structural and nonstructural proteins. The structural proteins include spike protein (S), envelope protein (E), membrane glycoprotein (M), nucleocapsid phosphoprotein (N), and the nonstructural proteins include open reading frame 1ab (ORF1ab), ORF3a, ORF6, ORF7a, ORF8, and ORF10 (2). Nucleocapsid (N) protein is the most abundant protein of coronavirus. It is also one of the major structural proteins and is involved in the transcription and replication of viral RNA, packaging of the encapsidated genome into virions (3), and interference with cell cycle processes of host cells (4). Moreover, in many coronaviruses, including SARS-CoV, the N protein has high immunogenic activity and is abundantly expressed during infection (5). It can be detected in various patient samples including nasopharyngeal aspirate, urine, and fecal. Both S and N proteins may be potential antigens for serodiagnosis of COVID-19, just as many diagnostic methods have been developed for diagnosing SARS based on S and/or N proteins (6).
    9103-01mg 582.37 EUR
  • SARS-CoV-2 (COVID-19) NSP7 Antibody

    Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP7 plays a role in viral RNA synthesis (3,4,5). It forms a hexadecamer with nsp8 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, it may synthesize substantially longer products than oligonucleotide primers.
    9155-002mg 225.11 EUR
  • SARS-CoV-2 (COVID-19) NSP7 Antibody

    Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP7 plays a role in viral RNA synthesis (3,4,5). It forms a hexadecamer with nsp8 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, it may synthesize substantially longer products than oligonucleotide primers.
    9155-01mg 582.37 EUR
  • SARS-CoV-2 (COVID-19) NSP7 Peptide

    SARS-CoV-2 (COVID-19) NSP7 Peptide
    9155P 230.79 EUR